Research of Illnesses F - J

image45

The following is an alphabetical list (F - J) of health conditions where PEMF was used in a study and shown to improve conditions and their cooresponding research. Click on the links to read more.


FIBROMYALGIA

Exposure to a specific pulsed electromagnetic field (PEMF) has been shown to produce analgesic (antinociceptive) effects in many organisms. In a randomized, double-blind, sham-controlled clinical trial, patients with either chronic generalized pain from fibromyalgia (FM) or chronic localized musculoskeletal or inflammatory pain were exposed to a PEMF (400 microT) through a portable device fitted to their head during twice-daily 40 min treatments over seven days. PEMF may be a novel, safe and effective therapeutic tool for use in at least certain subsets of patients with chronic, nonmalignant pain. – Pain Research & ManagementPMID: 18080043


GASTRODUODENITIS

Results of this study indicated that treatment with decimeter-band electromagnetic fields improved motor function of the stomach and reduced dyspepsia and pain in children suffering from chronic gastroduodenitis. Treatment made use of the “Romashka” apparatus (a cylinder applicator, 100 mm in diameter, power of 6-8 W) applied to the gastroduodenal region, and consisted of 6-12 minute exposures every other day for a total of 8-12 exposures.
L.M. Petrukhina, et al., “Effect of a Decimeter Wave Electromagnetic Fields on the Motor Function of the Stomach in Children with Strong Gastroduodenitis,” Vopr Kurortol Fizioter Lech Fiz Kult, (1),1987, . 54-56.
This controlled study examined the effects of sinusoidally modulated currents (100 Hz) coupled with conventional therapy in children suffering from chronic gastroduodenitis. Children received 8-10 exposures lasting between 6 and 10 minutes. Results showed that the treatment reduced inflammation in 72 percent of patients relative to just a 45-percent rate among controls. About 77 percent of treatment patients experienced elimination of gastro-esophageal and duodeno­gastral refluxes, compared to 29 percent of controls.
O.V. Bukanovich, et al., “Sinusoidally-Modulated Currents in the Therapy of Chronic Gastroduodenitis in Children,” Vopr Kurortol Fizioter Lech Fiz Kult, 2, 1996, . 22-26.
General Results of this study indicated that the optimal frequency of pulsed magnetic fields ranges between 10.0 and 25.0 Hz in the treatment of chronic inflammatory conditions of the locomotor apparatus, ischemia of the blood vessels of the lower extremities, dyspeptic syndrome, lactation mastitis, and other diseases. Treatment proved best when the therapeutic cycle was repeated after a 2-3 month period.
L. Navratil, et al., “Possible Therapeutic Applications of Pulsed Magnetic Fields,” Cas Lek Cesk, 132(19),October 11, 1993, . 590-594.
This article reviews the use of magnetotherapy in Czechoslovakia. Noting that this modality has been used for more than a decade, the author states that magnetotherapy has been shown to be effective in treating rheumatic diseases, sinusitis, enuresis, and ischemic disorders of the lower extremities. Positive findings have also been shown with respect to multiple sclerosis and degenerative diseases of the retina.
J. Jerabek, “Pulsed Magnetotherapy in Czechoslovakia–A Review,” Rev Environ Health, 10(2), April-June 1994, . 127-134.
This review article notes that pulse-type electromagnetic fields (PEMF) are the most frequently used type of electromagnetic therapy. Another form is pulsed radio frequency; PRF therapy generally includes daily sessions of 30-minute exposure and is primarily used in cases of pain and edema, with results being apparent quickly when the therapy is effective. PEMF treatment is most successful when used in bone healing, with results occurring over a longer period of time.
A.A. Pilla, “State of the Art in Electromagnetic Therapeutics: Soft Tissue Applications,” Second World Congress for Electricity and Magnetism in Biology and Medicine, 8-13 June 1997, Bologna, Italy.
This study examined the effects of electromagnetic fields administered over a period of 10 days on 354 patients suffering from various orthopedic conditions. Results showed the effects to be positive, with the greatest benefit experienced among patients with acute lesions.
G. Annaratone, et al., “Magnetotherapy in Clinical and Ambulatory Practice,” Minerva Med, 74(14-15), April 7, 1983, . 823-833.
Noting that beneficial effects of low-energy, time-varying magnetic fields have been shown since the early 1970s, this review article cites studies pointing to its success in the treatment of a wide range of conditions. The best results for this modality obtained in the area of bone healing.
C.A. Bassett, “Fundamental and Practical Aspects of Therapeutic Uses of Pulsed Electromagnetic Fields (PEMFs), ” Crit Rev Biomed Eng, 17(5), 1989, . 451-529.
This review article claims that over a quarter of a million patients worldwide with chronically ununited fractures have experienced beneficial results from treatment with pulsed electromagnetic fields. In addition, the author cites studies pointing to the treatment’s efficacy with respect to other conditions such as nerve regeneration; wound healing, graft behavior, diabetes, heart attack, and stroke.
C.A. Bassett, “Beneficial Effects of Electromagnetic Fields,” Journal of Cell Biochem, 51(4), April 1993, p. 387-393.
This review article notes that low-intensity millimeter waves have been used for treating a wide variety of medical conditions in the former Soviet Union since 1977, with more than a million patients treated and more than a thousand treatment centers in existence. This therapy has been approved for widespread use the Russian Ministry of Health, and over 300 scientific publications have described its effects. A typical course of treatment involves 10-15 daily exposures ranging from 15 to 60 minutes each.
A.G. Pakhomov, “Millimeter Wave Medicine in Russia: A Review of Literature,” Infrared Lasers and Millimeter Waves Workshop: The Links Between Microwaves and Laser Optics,January 21-22, 1997, Brooks Air Force Base, Texas.
This study concluded that the use of millimeter wave (MW) therapy was effective in the treatment of both children and adults suffering from a variety of orthopedic diseases, including osteochondrosis, arthrosis, infantile cerebral paralysis, Perthes’ disease, and inborn femur dislocation. MW therapy made use of the G4- 142 apparatus (55-65 GHz). Exposure was for 15-30 minutes in children or 30-60 minutes in adults over a period of 10-12 total exposures.
S.D. Schvchenko, et al., “Experience with Treating Some Orthopedic Diseases with Millimeter Range Radiation of Nonthermal Intensity,” Millimeter Waves in Medicine and Biology. Digest of Papers of the 11th Russian Symposium with International Participation,
April 21-24, 1997, Zvenigorod, Moscow Region, Russia, p. 33-35. 139. A.M.
This research examined the effects of low-frequency pulsed electromagnetic fields on patients suffering from a wide range of disorders, including musculoskeletal disorders, neurological disorders, circulatory diseases, traumatic disorders, gastroenterological problems, and stress-related morbidity. Treatment made use of the Rhumart apparatus, which produced waveforms with peak amplitudes up to 30 G. Results, based on the patients’ own subjective ratings, indicated the treatment to be beneficial across most conditions, with the strongest effects seen in those suffering from musculoskeletal and traumatic disorders.
Begue-Simon & R.A. Drolet, “Clinical Assessment of the Rhumart System based on the Use of Pulsed Electromagnetic Fields with Low Frequency,” International Journal of Rehabil Research, 16(4),1993, p. 323-327.
This review article summarizes findings presented at the Third Workshop on the use of low-intensity millimeter waves in medicine, held in Zvenigorod, Moscow Region, Russia. Such findings pointed to the efficacy of MW therapy with respect to alcoholism and its associated symptoms, gastric and duodenal ulcers, psoriasis, chronic furunculosis, and cardiovascular diseases.
Y.L. Arzumanov, “An Overview of the Third Workshop ‘Use of Millimeter Waves in Medicine,’” Millimetrovie Volni v Biologii i Meditcine, (3), 1994, p. 104-107.
This study examined the effects of magnetotherapy on patients suffering from a variety of eye and brain vascular disorders. Treatment made use of the “Polius-1? apparatus (50 Hz), with most patients receiving a course of 15-20 daily exposures. Results showed overall general improvements in 95 percent of patients with eye diseases.
N. Gilinskaya & L.V. Zobina, “Magnetic Field Application for the Treatment of Vascular Diseases of the Brain and Eyes,” in Y.A. Kholodov & N.N. Lebedeva (eds.), Problems of Electromagnetic Neurobiology, Moscow, Nauka,1988, p. 94-98.
This review article notes that low-frequency electromagnetic therapy has been used for a variety of purposes. Those specifically identified the author include cell growth promotion, pain reduction, improved blood circulation, bone repair, increased wound healing, sedative effects, enhanced sleep, and arthritic relief.
R.A. Drolet, “Rhumart Therapy: A Non-invasive Cell Regeneration Ion and Anti-Inflammatory Therapy Using LF-EM Fields,” Bioelectromagnetics Society, 4th Annual Meeting,28 June-2 July 1982, Los Angeles, CA, p. 45.
This review article notes that treatment with an “Infita” apparatus, used to deliver low-frequency magnetic fields, has been shown to improve general hemodynamics and microcirculation in addition to exhibiting anti-inflammatory, sedative, and analgesic effects in Olympic-level Russian athletes.
A. Zaslavskii, et al., “A Low-frequency Impulse Apparatus for Physical Therapy ‘Infita’,” Med Tehk, 5,1994, p. 39-41.
This review article cites studies pointing to the efficacy of low-frequency magnetic fields in the treatment of a wide variety of conditions, including burns, arthritis, fractures, arterial aneurysms, PMS, phantom pain, tuberculosis, ischemic heart disease, hypertension, bronchial asthma, and ulcerated varicose veins, among others.
V.M. Bogoliubov & L.A. Skurikhina, “Therapeutic Application of Constant and Low-Frequency Magnetic Fields,” Vopr Kurortol Fizioter Lech Fiz Kult, (2), 1979, p. 65-72.
This study examined the effects of extremely-low-frequency magnetic fields (TAMMAT device) in the treatment of a group of 650 patients suffering from a host of various diseases. Treatment consisted 15-25 minute daily exposures 5 days per week over a total of 20-25 days. Most patients experienced improvements after 2-3 exposures. Marked improvements were seen with respect to analgesic, anti-inflammatory, anti-tumor, and immune-enhancing effects.
V.I. Kovalchuk, et al., “Use of Extremely-Low-Frequency Magnetic Fields in Clinical Practice,” Fizicheskaia Meditzina, 4(1-2), 1994, p. 87
This article reports on the efficacy of a Russian electromagnetic stimulation apparatus termed “Cascade.” The authors state that data from 508 patients suffering from various ailments who were treated with the device indicate it to be anywhere from 75 to 100 percent effective. Examples of conditions in which the device was used include stubborn fractures, post-traumatic contractures, crush syndrome, and Perthes’ disease.
S.A. Schastnyi, et al., “A Contact-Free, Biologically Adequate Electromagnetic Stimulation of Repair Regeneration of Osseous, Cartilaginous, and Muscular Tissues in Children,” Vestn Ross Akad Med Nauk, (3), 1994, p. 38-42.
This review article on the use of pulsed magnetotherapy in Czechoslovakia points to its efficacy across a variety of conditions, including joint problems, enuresis, multiple sclerosis, diabetes, and carpal tunnel syndrome.
J. Jerabek, “Pulsed Magnetotherapy in Czechoslovakia: A Review,” First World Congress for Electricity and Magnetism in Biology and Medicine, 14-19 June 1992, Lake Buena Vista, FL, p. 81.


GLAUCOMA

In this study, patients with primary open-angle glaucoma with compensated intraocular pressure were administered magnetotherapy using an ATOS device with 33-mT magnetic field induction. The procedure was administered to a patient in a sitting posture with a magnetic inductor held before the eye. Sessions lasted 10 minutes and each course included 10 sessions. Following 4-5 months of therapy, results showed improved vision acuity 0.16 diopters, on an average of 29 out of 30 eyes with vision acuity below 1.0.
Bisvas, et al., “Possibilities of Magnetotherapy in Stabilization of Visual Function in Patients with Glaucoma,” Vestn Oftalmol, 112(1), Jauary-March 1996, p. 6-8.


HAIR LOSS

This double-blind, placebo-controlled study examined the effects of pulsed electromagnetic fields on hair loss in men suffering from male pattern baldness. PEMF exposures were administered to the head for 12 minutes and were given weekly or twice weekly over a period of 36 weeks. Results found the PEMF treatment both prevented hair loss and promoted regrowth without side effects.
W.S. Maddin, et al., “The Biological Effects of a Pulsed Electrostatic with Specific Reference to Hair: Electrotrichogenesis,” International Journal of Dermatology, 29(6), 1990, p. 446-450.


HEADACHE

Results of this double-blind, placebo-controlled study demonstrated that the administration of a pulsed magnetic field for less than one hour to headache patients produced significant beneficial effects, as shown subjective patient reports, as well as EEG activity.
O. Grunner, et al., “Cerebral Use of a Pulsating Magnetic Field in Neuropsychiatry Patients with Long-term Headache,” EEG EMG Z Elektroenzephalogr Verwandte Geb, 16(4),December 1985, p. 227-230
This article reports on the case of an acute migraine patient who was successfully treated with external magnetic fields.
R. Sandyk, “The Influence of the Pineal Gland on Migraine and Cluster Headaches and Effects of Treatment with picoTesla Magnetic Fields,” International Journal of Neurosci, 67(1-4),November-December 1992, p. 145-171.
This article examined the effects of millimeter wave therapy in the treatment of 107 patients suffering from headaches of varying causes. Treatment consisted of the Nao-Hu, Bai-Huei, and Hua-Chai acupuncture points being exposed to 5.6- and 4.9-mm wavelengths via the use of “Yav’-1-5.6? or “Electronka-KVCh” devices, respectively. Exposure lasted up to 60 minutes per day over a course of 10 days. All patients experienced positive results following 3-5 exposures. After one year, 48 percent of patients remained free of headaches, with a significant decrease in another 41 percent.
B.M. Popov & T.A. Al’shanskaya, “Use of Traditional and Non-traditional Methods in the Treatment of Headache,” Millimeter Waves in Medicine and Biology. Digest of Papers of the 11th Russian Symposium with International Participation,April 21-24, 1997, Zvenigorod, Moscow Region, Russia, p. 68-71.
This study examined the effects of pulsed electromagnetic fields (20 minutes per day for 15 days) in the treatment of patients suffering from chronic headaches. Results indicated the treatment to be most effective in patients suffering from tension headaches, with 88 percent of such patients reporting positive results. Beneficial results were also experienced patients suffering from migraines (60 percent), cervical migraines (68 percent), and psychogenic headaches (60 percent).
A. Prusinski, et al., “Pulsating Electromagnetic Field in the Therapy of Headache,” Hungarian Symposium on Magnetotherapy, 2nd Symposium, May 16-17, 1987, Szekesfehervar, Hungary, p. 163-166.
In this study, 90 headache patients were treated with pulsating electromagnetic fields via large coils to the body for 20 minutes per day for a total of 15 days. Results found the treatment to be either excellent or good for those patients suffering from migraine, tension, and/or cervical headaches. Patients experiencing post-traumatic or cluster headaches did not experience such benefits.
A. Prusinksi, et al., “Pulsating Electromagnetic Field in the Therapy of Headache,” Journal of Bioelectr., 7(1), 1988, p. 127-128.
Results of this study indicated that pulsating electromagnetic fields (12 Hz and 5 mT) were an effective prophylactic treatment for patients suffering from cervical and migraine headaches.
J. Giczi & A. Guseo, “Treatment of Headache Pulsating Electromagnetic Field a Preliminary Report,” Hungarian Symposium on Magnetotherapy, 2nd Symposium,May 16-17, 1987, Szekesfehervar, Hungary, p. 74-76.
This placebo-controlled, double-blind study examined the effects of pulsed electromagnetic fields (2-5 Hz and flux densities of 3-4 mT) on patients suffering from migraine headaches. PEMFs were administered to the head for 10-15 minutes per day over a period of 30 days. Results showed a mean improvement level of 66 percent in patients receiving the treatment, compared to just 23 percent among controls.
L. Lazar & A. Farago, “Experiences of Patients Suffering from Migraine-Type Headache Treated with Magnetotherapy,” Hungarian Symposium on Magnetotherapy, 2nd Symposium,May 16-17, 1987, Szekesfehervar, Hungary, p. 137-140.


HEART DISEASE

Results of this study found that the addition of magnetotherapy to the treatment of patients suffering from ischemic heart disease and osteochondrosis led to clinical improvements.

I. Rodin, et al., “Use of Low-Intensity Eddy Magnetic Field in the Treatment of Patients with Skin Lymphomas,” Voen Med Zh, 317(12), 1996, . 32-34.
Results of this study involving 23 parasystolic children found that low-frequency magnetic field exposure improved humoral and cellular processes involved in the regulation of cardiac rhythm.
M.A. Dudchenko, et al., “The Effect of Combined Treatment with the Use of Magnetotherapy on the Systemic Hemodynamics of Patients with Ischemic Heart Disease and Spinal Osteochondrosis,”Lik Sprava, (5), May 1992, . 40-43.
The authors of this study report on their development of a polymagnetic system called Avrora-MK-01 used to administer impulse magnetic fields to diseases of the leg vessels. Results indicated positive effects on peripheral capillaries in 75- 82 percent of patients receiving the treatment at a pre-gangrene stage.
E.M. Vasil’eva, et al., “The Effect of a Low-frequency Magnetic Field on Erythrocyte Membrane Function and on the Prostanoid Level in the Blood Plasma of Children with Parasystolic Arrhythmia,” Vopr Kurortol Fizioter Lech Fiz Kult, (2),March-April 1994, . 18-20.
Results of this study showed exposure to low-frequency alternating magnetic fields had beneficial effects in children with primary arterial hypertension, as seen in the attenuation of sympathetic and vagotonic symptoms.
Y.B. Kirillov, et al., “Magnetotherapy in Obliterating Vascular Diseases of the Lower Extremities,” Vopr Kurortol Fizioter Lech Fiz Kult, (3), May-June 1992, . 14-17.
This study demonstrated that traveling pulsed magnetic field and magnetic laser treatment produced beneficial effects in patients suffering from the initial stages of essential hypertension.
V.S. Zadionchenko, et al., “Prognostic Criteria of the Efficacy of Magnetic and Magnetic-laser Therapy in Patients with the Initial Stages of Hypertension,” Vopr Kurortol Fizioter Lech Fiz Kult, (1),January-February 1997, . 8-11.
In this article, the authors propose a new approach to treating atherosclerosis through the alteration of biophysical properties both intracellularly and extracellularly. Citing their own preliminary data, they suggest atherosclerotic lesions might be selectively resolved without harming normal blood vessels allowing the lesions to take up the magnetically excitable submicron particles and then applying an external alternating electromagnetic field.
R.T. Gordon & D. Gordon, “Selective Resolution of Plaques and Treatment of Atherosclerosis Biophysical Alteration of “Cellular” and “Intracellular” Properties,” Medical Hypotheses, 7(2), February 1981, . 217-229.
This study examined the effects of constant MKM2-1 magnets on essential hypertension patients. Results indicated the treatment decreased arterial pressure in stage II patients, with magnetotherapy being shown to produce beneficial effects on the central hemodynamics and microcirculation.
S.G. Ivanov, et al., “The Magnetotherapy of Hypertension Patients,” Ter Arkh, 62(9),
1990, . 71-74.
Results from several recent studies conducted the author are reviewed. Conclusions are that pulsed electromagnetic fields exhibit protective effects against necrosis from acute ischemia in rats, cerebral infarcts in rabbits, and myocardium infarcts in rats.
R. Cadossi, “Protective Effect of Electromagnetic Field Exposure on Acute Soft Tissue Ischaemic Injury,” Second World Congress for Electricity and Magnetism in Biology and Medicine,
8-13 June 1997, Bologna, Italy.
This study examined the effects of extremely high frequency electromagnetic radiation (EHF EMR) in 93 patients suffering ischemic heart disease. EHF treatment consisted of 10 to 15 exposures of the lower end of the sternum from a ‘Yav’-1-7,1 device. Treatment was performed five times weekly for a total of 30 minutes per day, with drug therapy being maintained during this period. Positive results tended to occur after 5 to 6 treatment sessions, with a good or satisfactory response being reported in 82 of 93 patients, and lasting as long as 11 months after hospital release.
I.E. Ganelina, et al., “Electromagnetic Radiation of Extremely High Frequencies in Complex Therapy for Severe Stenocardia,” Millimetrovie Volni v Biologii I Meditcine, (4), 1994, . 17-21.
This review article concerning the clinical application of electromagnetic fields notes that microwave therapy has been shown to improve local circulation and vascular tone, increase the volume of functional capillaries, lower hypertension, stimulate protein and carbohydrate metabolism, stimulate the pituitary-adrenal system, produce anti-inflammatory effects, and improve digestive organ function. Studies have shown decimeter wave therapy capable of stimulating the secretory function of the stomach, as well as blood circulation, respiratory function, and the immune system. Side effects have been reported in both human and animal studies.
V.V. Orzeshkovskii, et al., “Clinical Application of Electromagnetic Fields,” in I.G. Akoevs & V.V. Tiazhelov, (eds.), Topics of Experimental and Applied Bioelectromagnetics. A Collection of Research Papers, Puschcino, USSR, USSR Academy of Sciences, Biological Sciences Research Center,1983, . 139-147.
In this study, 30 myocardial infarction patients received millimeter-wave (MW) therapy in the form of 10 exposures of 30 minutes per day, with a 2-day interruption after the fifth exposure. Patients continued conventional drug treatment during the MW therapy period. Better results were seen in those patients exposed to the MW therapy relative to an equal number of patients receiving conventional treatment only.
N.N. Naumcheva, “Effect of Millimeter Waves on Ischemic Heart Disease Patients,” Millimetrovie Volni v Biologii I Meditcine, (3), 1994, . 62-67.
This study examined the effects of millimeter wave therapy in approximately 450 patients suffering from a variety of diseases, including those of the musculoskeletal, digestive, pulmonary, and nervous systems. Treatment consisted of 25-30 minutes per day using the “Porog-1? apparatus and generally lasted for a period of up to 10 days. Results showed positive effects in over 87 percent of the patients.
A.P. Dovganiuk & A.A. Minenkov, “The Use of Physical Factors in Treating Chronic Arterial Insufficiency of the Lower Limbs,” Vopr Kurortol Fizioter Lech Fiz Kult, (5),1996, . 7-9.
Results of this study found that the use of magnetophore therapy (constant magnets applied to adrenal regions 10 hours per day for 15 days) significantly improved symptoms associated with hypertension in about 35 percent of patients studied, with mild improvement seen in 30 percent, and no improvement in 35 percent. Patients receiving decimeter-band waves (460 MHz, field intensity of 35- 45 W, for 10-15 minutes per day for a total of 15 days) experienced similar results.
V.V. Orzheshovski, et al., “Efficacy of Decimeter-Band Waves and Magnetophore Therapy in Patients with Hypertension,” Vrach Delo, (1), 1982, . 65-67.
Results of this placebo-controlled study demonstrated a 76-percent effectiveness rate for running impulse magnetic field therapy in a group of arterial hypertensive patients. Treatment consisted of two 25-minute exposures per day over a period of 10-20 total exposures, at frequencies of 10 or 100 Hz and magnetic field intensity of 3 or 10 mT.
L.L.Orlov, et al., ” Indications for Using a New Magnetotherapeutic Method in Arterial Hypertension,” Soviet Medicine, (8), 1991, . 23-24.
This study examined the efficacy of the reinfusion of autologous blood following magnetic field exposure in hypertensive patients. Positive effects were found in 92 percent of patients receiving the treatment.
I.G. Alizade, et al., “Magnetic Treatment of Autologous Blood in the Combined Therapy of Hypertensive Patients,” Vopr Kurortol Fizioter Lech Fiz Kult, (1), 1994, . 32-33
This double-blind, placebo-controlled study examined the effects of magnetotherapy in patients suffering from first-or second-stage hypertension. A magnetic field of 50 Hz, 15-25 mT was applied to acupuncture points He-Gu and Shen’-Men for 15-20 seconds per day for a total of 9-10 days. Results: The treatment improved headaches in 88 percent of patients, dizziness in 89 percent, and irritability in 88 percent. In general, 95 percent of hypertensive patients experienced beneficial effects from the treatment, and the morbidity rate decreased twofold following one course extended over a period of 5-6 months.
E.V. Rolovlev, “Treatment of Essential Hypertension Patients an Alternating Magnetic Field Puncture,” All-Union Symposium: Laser and Magnetic Therapy in Experimental and Clinical Studies, June 16-18, 1993, Obninsk, Kaluga Region, Russia, . 221-223.
This placebo-controlled study examined the effects of constant and of running magnetic fields in patients suffering from stage II hypertension. Results found that constant magnetic fields exhibited benefits in 68 percent of patients treated, and running magnetic fields were helpful in 78 percent. Only 30 percent of controls showed improvement. Constant magnetic field treatment consisted of constant magnets applied to the inner side of the wrist on each hand for 35-40 minutes daily over a period of 7-10 days. Running magnetic field treatment involved the use of a “Alimp-1? apparatus for 20 minutes per day for a total of 12- 15 days.
S.G. Ivanov, et al., “Use of Magnetic Fields in the Treatment of Hypertensive Disease, ” Vopr Kurortol Fizioter Lech Fiz Kult, (3), 1993, . 67-69.
This double-blind, placebo-controlled study found that magnetotherapy was effective in the treatment of symptoms associated with stage II hypertension, such as headache, dizziness, and cardiodynia. The therapy consisted of permanent circular magnets (16 mT) applied to the inner forearm for 30-45 minutes per day over a period of 10 sessions.
S.G. Ivanov, “The Comparative Efficacy of Nondrug and Drug Methods of Treating Hypertension, ” Ter Arkh, 65(1), 1993, . 44-49.
This controlled study examined the effects of magnetotherapy in patients suffering from neurocirculatory hypotension (low blood pressure) or hypertension (high blood pressure). Treatment consisted of a running pulsed magnetic field generated an “ALIMP” device (0.5 mT, 300 Hz) administered for 20 minutes per day over a course of 10 days. Patients suffering from hypotension did not benefit significantly from the magnetotherapy. Hypertension patients, however, showed a marked improvement with respect to symptoms including headache, chest pain, extremity numbness, abnormal systolic and diastolic blood pressure, and work capacity.
L.L. Orlov, et al., “Effect of a Running Pulse Magnetic Field on Some Humoral Indices and Physical Capacity in Patients with Neurocirculatory Hypo- and Hypertension,” Biofizika, 41(4),1996, . 944-948.
This double-blind, placebo-controlled study found that low-frequency, low-intensity electrostatic fields (40-62 Hz) administered for 12-14 minutes per day helped normalize blood pressure in patients suffering from hypertension.
T.A. Kniazeva, “The Efficacy of Low-Intensity Exposures in Hypertension,” Vopr Kurortol Fizioter Lech Fiz Kult, 1,1994, . 8-9.
This study examined the effects of low-frequency alternating magnetic fields in patients suffering from arteriosclerosis or osteoarthrosis deformans. Treatment involved 10-15 minute daily leg exposures over a total of 15 days. Results showed the treatment to be effective in 80 percent of arteriosclerosis patients and 70 percent of those with osteoarthrosis formans.
A.G. Kakulia, “The Use of Sonic Band Magnetic Fields in Various Diseases,” Vopr Kurortol Fizioter Lech Fiz Kult, 3,1982, . 18-21.
This study examined the effects of low-frequency magnetic fields (25 mT) in patients suffering atherosclerotic encephalopathy. Treatment involved 10-15 minute daily exposures over a total of 10-15 applications. Results showed clinical improvements with respect to chest pain, vertigo, headache, and other symptoms.
S.S. Gabrielian, et al., “Use of Low-Frequency Magnetic Fields in the Treatment of Patients with Atherosclerotic Encephalopathy,” Vopr Kurortol Fizioter Lech Fiz Kult, 3, 1987, . 36-39.


HEART RATE VARIABILITY

Exposure to PEMF for 20 minutes resulted in more rapid recovery of heart rate variability, especially in the very low frequency range after physical strain. The study also showed the moderating influence of the subjects’ constitutional VLF power on their response to PEMF treatment. These findings have since been replicated in a clinical study and should be taken into consideration when PEMF treatment is chosen. – European Journal of Applied Physiology PMID: 17674028


HEMOPHILIA

In this study, hemophiliacs suffering from joint hemorrhage received millimeter wave (MW) therapy at biologically active points beginning on the first day of hospital release. Adults were treated with an “Electronica-KVCh” device (61 GHz, 5 mW maximum power) and children were treated with a “Porog” device, which generates low-intensity wide-band MMW noise. Exposures in both groups lasted for 20-25 minutes per day and were extended over a period of 10 days. Results indicated the treatment to be more effective than conventional therapy with respect to alleviation of pain, need for medication, and other parameters.
V.V. Aleschenko & I.O. Pisanko, “EHF-Therapy for Hemophylic Arthropathy and Hemarthroses of the Knee Joint,”Millimeter Waves in Medicine and Biology. Digest of Papers of the 10th Russian Symposium with International Participation, April 24-26, Moscow, Russia, 1995, p. 61-63.


HEPATITIS

This double-blind, placebo-controlled study examined the effects of millimeter wave therapy combined with conventional methods in the treatment of viral hepatitis in children. Making use of a “Yav’-1-5,6? or “Yav’-1-7,7? device, MW therapy involved 14-15 exposures of, on average, 30 minutes per day at wavelengths of either 5.6 or 7.1 mm. Results indicated the combined treatment to be more effective than conventional treatment only, leading to a more rapid restoration of liver function.
A.A. Shul’diakov, et al., “Electromagnetic Radiation of Millimeter Range in Treatment of Children with Acute Viral Hepatitis,” Millimeter Waves in Medicine and Biology, 10th Russian Symposium with International Participation,
April 24-26, 1995, Moscow, Russia, p. 21-23.
Results of this study showed that the use of magnetic fields was effective in treating patients suffering from viral hepatitis who had previously not benefited from conventional drug therapies.
I.A. Il’inskii, et al., “Experience with the Use of Glucocorticosteroids and Magnetic Fields in the Intensive Therapy of Severe Forms of Viral Hepatitis,” Soviet Medicine, 9,1978, p. 72-74.
This study examined the effects of magnetotherapy in children suffering from various forms of viral hepatitis. Magnetotherapy consisted of alternating magnetic fields applied to the liver area daily over a total of 10-15 days. Results indicated magnetotherapy led to more rapid and trouble-free recovery.
V.V. Krasnov & A.I. Shilenok, “Magnetotherapy of Hepatitis A and B in Children,” Pediatriia, 10,1991, p. 54-57.


HERNIATED DISK
This double-blind, placebo-controlled study examined the effects of magnetotherapy in patients following herniated disk surgery. Results showed that 52 percent of patients receiving the treatment compared to 30 percent of controls reported being free of symptoms at the time of hospital release.
K. Perjes, et al., “Effect of Magnetotherapy on Recovery After Herniated Disk Surgery,” Hungarian Symposium on Magnetotherapy, 2nd Symposium, May 16-17, 1987, Szekesfehervar, Hungary, p. 159-162.


HIP PROBLEMS

This double-blind study examined the effects of pulsed electromagnetic fields on loosened hip prostheses. Results showed an increase of bone density in all patients receiving PEMF treatment compared to only 60 percent of controls. The authors argue such findings suggest PEMF elicits early bone reconstruction, which enhances early weight bearing.
G. Gualtieri, et al., “The Effect Pulsed Electromagnetic Field Stimulation on Patients Treated of Hip Revesions with Trans-Femoral Approach,” Second World Congress for Electricity and Magnetism in Biology and Medicine,
8-13 June 1997, Bologna, Italy.
This study examined the effects of pulsed electromagnetic fields (50 Hz, 50 G) in treating aseptic loosening of total hip prostheses. PEMF therapy consisted of 20 minutes per day for 6 days per week over a total of 20 such sessions and was begun, on average, a year and a half following the start of loosening. Results showed PEMF to have some beneficial effects with respect to loosened hip arthroplasties, although it was not effective in patients suffering severe pain due to extreme loosening.
K. Konrad, “Therapy with Pulsed Electromagnetic Fields in Aseptic Loosening of Total Hip Protheses: A Prospective Study,” Clinical Rheumatology, 15(4), 1996, p. 325-328.


INFLAMMATION

It is well known that electromagnetic fields (EMFs) can induce repair of non-healing bone fractures. It is generally believed that non-invasive, EMF therapy might have a broad, albeit currently unrecognized clinical potential. Since T cells are key modulators of inflammation, the development of EMF based therapeutic devices to regulate their activity can be expected to provide important tools to treat numerous human inflammatory diseases such as psoriasis and arthritis. – Biomedical Sciences Instrumentation PMID: 10834201


JOINT DISEASE

Results of this 11-year study involving 3014 patients found pulsed magnetic field treatment at low frequencies and intensities to be a highly effective, side-effect­free therapy for joint disease.
E. Riva Sanseverino, et al., “Therapeutic Effects of Pulsed Magnetic Fields on Joint Diseases,” Panminerva Med, 34(4), October-December 1992, p.187-196.